Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
2.
Braz. j. med. biol. res ; 27(5): 1123-1128, May 1994.
Article in English | LILACS | ID: lil-319814

ABSTRACT

Cerebral ischemia causes cell death of vulnerable neurons in mammalian brain. Wistar adult rats (male and female, weighing 180-280 g) were submitted to 2 min, 10 min, or to 2 and 10 min (separated by a 24-h interval) of transient forebrain ischemia by the four-vessel occlusion method. Animals subjected to the longer ischemic episodes had massive necrosis of pyramidal CA1 cells of the hippocampus, while animals receiving double ischemia (2 + 10 min) showed neuronal tolerance to the ischemic insult. ATP-diphosphohydrolase activity from hippocampal synaptosomes was assayed in these three groups (N = 6 animals/group) under two conditions: no reperfusion and 5-min of reperfusion. The control values for ATPase and ADPase activities were 144.7 +/- 18.8 and 60.6 +/- 5.24 nmol Pi min-1 mg protein-1, respectively. The 10-min group without reperfusion showed an enhancement of approximately 20 for ATPase and ADPase activities. In reperfused rats, only the 2-min group had a 20 increase in both enzymatic activities. We suggest that modulation of ATP-diphosphohydrolase activity might be involved in molecular events that follow both ischemia and reperfusion.


Subject(s)
Animals , Male , Female , Rats , Apyrase , Ischemic Attack, Transient/enzymology , Hippocampus , Synaptosomes , Adenosine Triphosphatases , Rats, Wistar , Reperfusion , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL